If a1,a2,a3.....an are in A.P. Where ai>0 for all i, then the value of 1√a1+√a2+1√a2+√a3+.........+1√an−1+√an=
If (1+ax+bx2)4=a0+a1x+a2x2+…+a8x8; a, b, a0, a1…a8ϵR and are such that a0+a1+a2≠0 and ∣∣ ∣∣a0a1a2a1a2a0a2a0a1∣∣ ∣∣=0, then