A man goes in for an examination in which there are 4 papers with a maximum of 10 marks for each paper. The number of ways of getting 20 marks on the whole is
If we take the marks in each
test to be m.
The required answer is the coefficient of x2m in (x0+x1+...xm)4=(1−xm+11−x)4=(1−xm+1)4.(1−x)−4
=(1−xm+1)4.(1+41C.x+52C.x2+63C.x3+...(m+2)(m−1)C.xm−1+....+(2m+3)2mC.x2m+.....∞)
=(2m+3)2mC−4×(m+2)(m−1)C
=(2m+3)3C−4×(m+2)3C
=(2m+3)(2m+2)(2m+1)6−4×(m+2)(m+1)(m)6=2(2m+3)(m+1)(2m+1)6−4×(m+2)(m+1)(m)6
=(m+1)3×(2m+3)(2m+1)−2m(m+2)3=(m+1)(2m2+4m+3)3
Here, m=10
Thus, after
substituting, the answer is 11×2433=891