Given P = ₹ 2000
r = 10%
Let number of months be 'n'.
Amount deposited = P \(\times\) n = 2000 n
Interest = \(\frac{P \times n (n+1)}{2 \times 12} \times (\frac{r}{100})\)
I = \(\frac{2000 \times n (n+1)}{2 \times 12} \times (\frac{24}{100})= 20\times n(n+1) = 20(n^2 + n)\)
Maturity value = Amount deposited + Interest
\(27120 = 2000 n + 20(n^2 + n)\)
\(1356 = 100n + n^2 + n\)
\(n^2 + 101n - 1356 = 0\)
\(n^2 + 113n -12n - 1356 = 0\)
\(n(n+113) - 12(n+ 113) = 0\)
\(n = -113\ \text{ or} \ n = 12\)
Since time period cannot be negative, so n = 12 months.
Hence, the account was held for 12 months.