Given : P = Rs 250, r = 12% p.a. and maturity
value = Rs 10665
Let the account be held for n months
Then, money deposited for n months
=Rs(250×n)
Equivalent principal for 1 month,
x=P[n(n+1)2]=Rs[250×n(n+1)2]=Rs[125n(n+1)]
∴Interest=x×r100×112=Rs[125n(n+1)×12100×112]=Rs5n(n+1)4
∴ Maturity value = Sum deposited + Interest
⇒10665=250n+5n(n+1)4⇒42660=1000n+5n(n+1)⇒n(n+1)+200n=8532⇒n2+201n−8532=0⇒n2+237n−36n−8532=0⇒n(n+237)−36(n+237)=0⇒(n+237)(n−36)=0⇒(n+237)(n−36)=0⇒n+237=0orn−36=0⇒n=−237 or n=36
As the time (n) cannot be negative, so n=36 months or 3 years.
Hence, the required time is 3 years