Step 1:Draw a labelled diagram.
Step 2:
Find the actual rain’s velocity.
Given,
\(\overrightarrow{v}_m=5\hat{i},~\theta=45^\circ\)
\(\overrightarrow{v}_{r/m}=v_1~\cos~45^\circ~\hat{i}-v_1\sin~45^\circ~\hat{k}\)
\(=\dfrac{v_1}{\sqrt{2}}\hat{i}-\dfrac{v_1}{\sqrt{2}}\hat{k}\)
\(\overrightarrow{v}_r=\overrightarrow{v}_{r/m}+\overrightarrow{v}_m\)
\(\overrightarrow{v}_r=\left(\dfrac{v_1}{\sqrt{2}}+5\right)\hat{i}-\dfrac{v_1}{\sqrt{2}}\hat{k}\)
\(\text{Horizontal component} =\dfrac{v_1}{\sqrt{2}}+5\)
\(\text{Vertical component} =\dfrac{v_1}{\sqrt{2}}\)
So\(\text{horizontal component} > \text{vertical component}\)
Final Answer: (b)