Given, T be the temperature, Ts be temperature of surrounding and t be time in minutes
Given data:
Ts=40∘C,
Condition 1) At t=0, T=100∘C
and 2) at t=4, T=60∘C
To find: t when T=50∘C
dTdt=−k(T−40)
⇒dT(T−40)=−k dt
Integrating both sides,
log(T−40)=−kt+C ...(1)
using condition (1), at t=0, T=100∘C
C=log(60)
∴ Eq.(1) becomes,
⇒log(T−40)=−kt+log(60)
⇒log(T−4060)=−kt ...(2)
using condition (2),
log(60−4060)=−4k
⇒log2060=−4k
⇒log13=−4k
⇒k=−14log13
⇒k=14log(3)
∴ Eq. (2) becomes,
⇒logT−4060=−t4log3
⇒t4log3=−logT−4060
⇒t4log3=log60T−40
So, t when T=50∘C is,
t4log3=log6050−40=log6
⇒t4log3=log6
⇒t=4log6log3 min