wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A metal ball of mass 1 kg is heated by means of a 20 W heater in a room at 20°C. The temperature of the ball becomes steady at 50°C. (a) Find the rate of loss of heat to the surrounding when the ball is at 50°C. (b) Assuming Newton's law of cooling, calculate the rate of loss of heat to the surrounding when the ball rises 30°C. (c) Assume that the temperature of the ball rises uniformly from 20°C to 30°C in 5 minutes. Find the total loss of heat to the surrounding during this period. (d) Calculate the specific heat capacity of the metal.

Open in App
Solution

In steady state, the body has reached equilibrium. So, no more heat will be exchanged between the body and the surrounding.

This implies that at steady state,
Rate of loss of heat = Rate at which heat is supplied

Given:
Mass, m = 1 kg
Power of the heater = 20 W
Room temperature = 20°C

(a)At steady state,
Rate of loss of heat = Rate at which heat is supplied
And, rate of loss/gain of heat = Power

dQdt = P = 20 W

(b) By Newton's law of cooling, rate of cooling is directly proportional to the difference in temperature.
So, when the body is in steady state, then its rate of cooling is given as

dQdt = K T-T020 = K 50-20 K=23
When the temperature of the body is 30°C, then its rate of cooling is given as
dQdt = K T-T0=2330-20=203W
The initial rate of cooling when the body,s temperature is 20°C is given as

dQdt20=0 dQdt30=203

dQdtavg=103
t = 5 min = 300 s
Heat liberated=103×300=1000 J
Net heat absorbed = Heat supplied − Heat Radiated
= 6000 − 1000 = 5000 J
(d) Net heat absorbed is used for raising the temperature of the body by 10°C.
∴ m S ∆T = 5000
S=5000m×T=50001×10=500 J Kg-1C-1

flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Laws of Radiation
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon