Q. In a thin rectangular metallic strip a constant current
I flows along the positive
x-direction, as shown in the figure. The length, width and thickness of the strip are
l,
w and
d, respectively. A uniform magnetic field
→B is applied on the strip along the positive
y-direction. Due to this, the charge carriers experience a net deflection along the
z-direction. This results in accumulation of charge carriers on the surface PQRS and appearance of equal and opposite charges on the face opposite to PQRS. A potential difference along the
z-direction is thus developed. Charge accumulation continues until the magnetic force is balanced by the electric force. The current is assumed to be uniformly distributed on the cross section of the strip and carried by electrons.
Consider two different metallic strips (1 and 2) of same dimensions (length
l, width
w and thickness
d) with carrier densities
n1 and
n2, respectively. Strip 1 is placed in magnetic field
B1 and strip~2 is placed in magnetic field
B2, both along positive
y-directions. Then
V1 and
V2 are the potential differences developed between
K and
M in strips 1 and 2, respectively. Assuming that the current
I is the same for both the strips, the correct options(s) is(are),