wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A monkey of mass 40 kg climbs on a rope (Fig. 5.20) which can stand a maximum tension of 600 N. In which of the following cases will the rope break: the monkey

(a) climbs up with an acceleration of 6 m s–2

(b) climbs down with an acceleration of 4 m s–2

(c) climbs up with a uniform speed of 5 m s–1

(d) falls down the rope nearly freely under gravity?

(Ignore the mass of the rope).

Fig. 5.20

Open in App
Solution

Case (a)

Mass of the monkey, m = 40 kg

Acceleration due to gravity, g = 10 m/s

Maximum tension that the rope can bear, Tmax = 600 N

Acceleration of the monkey, a = 6 m/s2 upward

Using Newton’s second law of motion, we can write the equation of motion as:

Tmg = ma

T = m(g + a)

= 40 (10 + 6)

= 640 N

Since T > Tmax, the rope will break in this case.

Case (b)

Acceleration of the monkey, a = 4 m/s2 downward

Using Newton’s second law of motion, we can write the equation of motion as:

mg – T = ma

T = m (g – a)

= 40(10 – 4)

= 240 N

Since T < Tmax, the rope will not break in this case.

Case (c)

The monkey is climbing with a uniform speed of 5 m/s. Therefore, its acceleration is zero, i.e., a = 0.

Using Newton’s second law of motion, we can write the equation of motion as:

Tmg = ma

Tmg = 0

T = mg

= 40 × 10

= 400 N

Since T < Tmax, the rope will not break in this case.

Case (d)

When the monkey falls freely under gravity, its will acceleration become equal to the acceleration due to gravity, i.e., a = g

Using Newton’s second law of motion, we can write the equation of motion as:

mg – T = mg

T = m(gg) = 0

Since T < Tmax, the rope will not break in this case.


flag
Suggest Corrections
thumbs-up
51
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
An Upside Down World
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon