A monument ABCD stands at a point A on a level ground. At a point P on the ground the portions AB, AC, AD subtend angles α,β,γ respectively. If AB=a,AC=b,AD=c,AP=x and α+β+γ=180o then
a=AB=APtanα=xtanα.
b=AC=xtanβ
c=AD=xtanγ.
Now
a+b+c=x(tanα+tanγ+tanβ)
Now
α+β+γ=π
Hence
tanα.tanβ.tanγ=tanα+tanγ+tanβ.
Hence
a+b+c=x(tanα.tanβ.tanγ)
...(i)
And
abc=x3(tanα.tanβ.tanγ)...(ii)
From i and ii, we get
a+b+cx=abcx3
Or
x2=abca+b+c.
Now
tanα+tanβ+tanγ
=a+b+cx
=(a+b+c)√a+b+c√abc
=(a+b+c)32√abc.