wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A monument ABCD stands at a point A on a level ground. At a point P on the ground the portions AB, AC, AD subtend angles α,β,γ respectively. If AB=a,AC=b,AD=c,AP=x and α+β+γ=180o then

A
x2=(a+b+c)abc
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x2=abc(a+b+c)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
tanα+tanβ+tanγ=(a+b+c)32abc
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
tanαtanβtanγ=(a+b+c)32abc
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct options are
B x2=abc(a+b+c)
C tanα+tanβ+tanγ=(a+b+c)32abc
D tanαtanβtanγ=(a+b+c)32abc

a=AB=APtanα=xtanα.
b=AC=xtanβ
c=AD=xtanγ.
Now
a+b+c=x(tanα+tanγ+tanβ)
Now
α+β+γ=π
Hence
tanα.tanβ.tanγ=tanα+tanγ+tanβ.
Hence
a+b+c=x(tanα.tanβ.tanγ) ...(i)
And
abc=x3(tanα.tanβ.tanγ)...(ii)
From i and ii, we get
a+b+cx=abcx3
Or
x2=abca+b+c.
Now
tanα+tanβ+tanγ
=a+b+cx

=(a+b+c)a+b+cabc

=(a+b+c)32abc.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon