Examining each part of the journey, we find:
\(Part\ 1: \\ \text{Distance} = 3\ miles;\ \text{Speed} = 60\ mph\)
\(\text{Time taken to cover part 1}\\ = \dfrac{Distance}{Speed} = \dfrac{3}{60} = \dfrac{1}{20}\ hours\)
\(Part\ 2: \\ \text{Distance} = 5\ miles;\ \text{Speed} = 50\ mph\)
\(\text{Time taken to cover part 2}\\ = \dfrac{Distance}{Speed} = \dfrac{5}{50} = \dfrac{1}{10}\ hours\)
\(Part\ 3: \\ \text{Distance} = 2\ miles;\ \text{Speed} = 'S'\ mph\)
\(\text{Time taken to cover part 3}\\ = \dfrac{Distance}{Speed} = \dfrac{2}{S}\ hours\)
\(Average\ speed = \dfrac{Total\ distance}{Total\ time}\)
\(\implies 60\ mph = \dfrac{10\ miles}{\dfrac{1}{20} + \dfrac{1}{10} + \dfrac{2}{S}}\)
Multiplying both sides of the equation with the denominator, we get:
\(\dfrac{60}{20}\ + \dfrac{60}{10}\ + \dfrac{120}{S}\ = 10\ miles\)
\(\implies 3 + 6 + \dfrac{120}{S} = 10\)
\(\implies \dfrac{120}{S} = 10 – 9 = 1\)
\(\implies S = 120\ mph\)