A motorcar of mass 1200 kg is moving along a straight line with a uniform velocity of 90 km/h. Its velocity is slowed down to 18 km/h in 4 s by an unbalanced external force. Calculate the acceleration and change in momentum. Also calculate the magnitude of the force required.
Mass of the motor car, m = 1200 kg
Initial velocity of the motor car, u = 90 km/h = 25 m/s
Final velocity of the motor car, v = 18 km/h = 5 m/s
Time taken, t = 4 s
According to the first equation of motion:
v = u + at
5 = 25 + a (4)
a = -5 m/s2
Change in momentum = mv − mu = m (v−u)
= 1200 (5 − 25) = -24000 kg m s−1
Force = Mass × Acceleration
= 1200 × (-5) = -6000 N
Acceleration of the motor car = -5 m/s2
Change in momentum of the motor car = -24000 kg m s−1
Hence, the force required to decrease the velocity is -6000 N.
(Negative sign indicates the retardation , decrease in momentum and retarding force respectively)