The correct option is C D moves from V(1,2,5) to W(4,6,10)
The displacement vector is the difference between the final position and the initial position.
So, displacement of A is
−→SA=(4^i+6^j+8^k)−(1^i+2^j+3^k)
=3^i+4^j+5^k
Similarly, from the options, the displacement of B,C,D and E is
−→SB=(1^i+2^j+3^k)−(2^i+3^j+5^k)
=−1^i+−1^j−2^k
−→SC=(4^i+4^j+0^k)−(7^i+8^j+5^k)
=−3^i−4^j−5^k
−→SD=(4^i+6^j+10^k)−(1^i+2^j+5^k)
=3^i+4^j+5^k
−→SE=(1^i+2^j+3^k)−(0^i+0^j+0^k)
=1^i+2^j+3^k
∵ −→SA=−→SD
Hence, option (C) is correct.