The correct options are
B n is never a perfect square
C n is always divisible by 24
Letn=a(a+1)(a+2)(a+3)aspertheproblem.Case1−Ifaiseventhena=2pwhenpisaninteger.∴n=2p(2p+1)(2p+2)(2p+3)=4p(2p+1)(2p+1)(2p+3)Firsttermoftheproduct=16p4⇒asquarenumber(1)Lasttermoftheproduct=1×2×3=6⇒notasquarenumber(2)Alsoweknowthatifakisintheformkr=(l+m)randkrisasquarenumber,theexpansionof(l+m)rmusthavefirsttermlrandlasttermmrassquarenumbers........(3)Case2−aisodd=2p+1thenn=(2p+1)(2p+2)(2p+3)(2p+4)=4(2p+1)(2p+1)(2p+3)(p+2)........(4)Firsttermoftheproduct=16p4⇒asquarenumber(5)Lasttermoftheproduct=2×3×4=24⇒notasquarenumber......(6)Fromtheaboveresultsi.e1,2,3,4,5and6weinvestigatetheoptions.OptionA⟶Inn+1lastterm=6+1=7whenaisevenandlastterm=24+1=25=52whenaisodd.Son+1mayormaynotbeasquarenumber.OptionAisnotcorrect.OptionB⟶aeven⇒lastterm6aodd⇒lastterm24.Both6and24arenotsquarenumber.∴nisneveraperfectsquare.∴OptionBiscorrect.OptionC⟶Whenaisevenandtakesvalue2,4,6etcwehaven=120,840,3024,.................respectively.=24×5,24×35,24×126,.............∴nisdivisibleby24whenaisoddandtakesvalue1,3,5etcwehaven=24,360,1680−−−−−respectively=24,24×15,24×70...........respectively∴nisalwaysdivisibleby24OptionCiscorrect.Alsoeverysetof4consecutivenumbercontains2,3,4asfactors.Soanyfourconsecutivenumberisdivisibleby24.OptionD⟶n+12⇒lasttermis12+6=18⇒notasquarenumberand12+24=36⇒asquarenumber.∴n+12mayormaynotbeasquarenumber.OptionDisnotcorrect.Answer−BandC