wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A natural number is called a perfect square, if it is the square of some other natural number.
Note: Perfect squares are not going to end in 2, 3, 7 or 8 and they won't be of the form in 4n+2 or in+3.

Let n be a product of four consecutive positive integers then which answer is not true.

A
n+1 is always a perfect square
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
n is never a perfect square
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
n is always divisible by 24
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
n+12 is always a perfect square
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
B n is never a perfect square
C n is always divisible by 24
Letn=a(a+1)(a+2)(a+3)aspertheproblem.Case1Ifaiseventhena=2pwhenpisaninteger.n=2p(2p+1)(2p+2)(2p+3)=4p(2p+1)(2p+1)(2p+3)Firsttermoftheproduct=16p4asquarenumber(1)Lasttermoftheproduct=1×2×3=6notasquarenumber(2)Alsoweknowthatifakisintheformkr=(l+m)randkrisasquarenumber,theexpansionof(l+m)rmusthavefirsttermlrandlasttermmrassquarenumbers........(3)Case2aisodd=2p+1thenn=(2p+1)(2p+2)(2p+3)(2p+4)=4(2p+1)(2p+1)(2p+3)(p+2)........(4)Firsttermoftheproduct=16p4asquarenumber(5)Lasttermoftheproduct=2×3×4=24notasquarenumber......(6)Fromtheaboveresultsi.e1,2,3,4,5and6weinvestigatetheoptions.OptionAInn+1lastterm=6+1=7whenaisevenandlastterm=24+1=25=52whenaisodd.Son+1mayormaynotbeasquarenumber.OptionAisnotcorrect.OptionBaevenlastterm6aoddlastterm24.Both6and24arenotsquarenumber.nisneveraperfectsquare.OptionBiscorrect.OptionCWhenaisevenandtakesvalue2,4,6etcwehaven=120,840,3024,.................respectively.=24×5,24×35,24×126,.............nisdivisibleby24whenaisoddandtakesvalue1,3,5etcwehaven=24,360,1680respectively=24,24×15,24×70...........respectivelynisalwaysdivisibleby24OptionCiscorrect.Alsoeverysetof4consecutivenumbercontains2,3,4asfactors.Soanyfourconsecutivenumberisdivisibleby24.OptionDn+12lasttermis12+6=18notasquarenumberand12+24=36asquarenumber.n+12mayormaynotbeasquarenumber.OptionDisnotcorrect.AnswerBandC

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Elements of Matrix
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon