A neutron with kinetic energy K=10MeV activates a nuclear reaction n+12C→9Be+α whose threshold Eth=6.17MeV. Find the kinetic energy of the alpha particles outgoing at right angles to the direction of the incoming neutron. [Take u=931.1MeV]
Open in App
Solution
Conservation of energy gives, m1c2+m2c2+K1=m3c2+m4c2+K3+K4 or Q+K1=K3+K4 ... (1) Momentum conservation along x−axis. √2m1K1=√2m4K4cosθ or, m1K1=m4K4cos2θ...(2) Along y−axis √2m3K3=√2m4K4sinθ or, m3K3=m4K4sin2θ (3) Adding (2) and (3) m1K1+m3K3=m4K4 or, K4=m1m4K1+m3m4K3 Substituting the value of K4 in equation(1), we get Q+(1−m1m4)K1=(1+m3m4)K3 Here, Q=−Eth(1+m1m2)=−6.17(1+112)=−6.17(1213)=−5.69MeV Thus (1+49)K3=−5.69+(1−19)(10) K3=913[−5.69+8.89]=2.21MeV