The correct option is A 3
Given, tan−1(12x+1)+tan−1(14x+1)
=tan−1(4x+1+2x+1(4x+1)(2x+1)−1)
=tan−1(6x+28x2+6x+1−1
=tan−1(2(3x+1)2x(4x+3))
=tan−1(2x2)
∴3x+1x(4x+3)=2x2
(3x+1)x2=2x(4x+3)
3x3+x2=8x2+6x
3x3−7x2−6x=0
x(3x2−7x−6)=0
x=0 is one root.
3x2−7x−6=0
3x2−9x+2x−6=0
(3x+2)(x−3)=0
x=−23 and x=3
Hence there is only one non-zero integral solution.