The correct option is D 2
Let g(x)=anxn+an−1xn−1+...a1x+a0
On differentiating we get,
g′(x)=n×(anxn−1)+(n−1)(an−1xn−2)+...a1
Differentiating again,
g′′(x)=(n)(n−1)(anxn−2)+(n−1)(n−2)(an−1xn−2)+...2a2
Given,
g(x)=g′(x)×g′′(x)
Comparing the coefficient of the highest power of x we get,
anxn=(n)(n)(n−1)(anxn−1)(anxn−2)
⇒n=2n−3 and an=n2(n−1)an2
⇒n=3
⇒an=9(2)an2
⇒an=a=118
⇒36a=2