Let point P be (x,y).
Then, equation of the normal at P is,
Y−yX−x=−dxdy
⇒(X−x)+(Y−y)dydx=0⇒X+Ydydx=x+ydydx
Putting Y=0, coordinates of A is (x+ydydx,0)
Putting X=0, coordinates of B is ⎛⎜
⎜
⎜⎝0,x+ydydxdydx⎞⎟
⎟
⎟⎠
Given, 1OA+1OB=1
⇒1x+ydydx+dydxx+ydydx=1
⇒1+dydx=x+ydydx⇒(y−1)dydx=1−x⇒(y−1) dy=(1−x) dx
Integrating, we get
y22−y=x−x22+C
where C is constant of integration.
Since the curve passes through (2,3),
92−3=2−42+C⇒C=32
Therefore, the equation of the curve is,
y22−y=x−x22+32
Intersection with y−axis, putting x=0,
y22−y=32⇒y2−2y−3=0⇒(y−3)(y+1)=0⇒y=−1,3
Hence, the number of points of intersection with y−axis is 2.