The correct option is
B 9x2−4y2=169given hyperbola is:
4x2−9y2=36
let (x0,y0) be point of contact of normal on the hyperbola
Finding slope of normal at that point:
Differntiating hyperbola equation we get; 4×2×x−9×2×ydydx=0
⇒dydx=4x9y = slope of tangent
∴ slope of normal=−9y4x
equation of normal at (x0,y0) is:
y−y0=−9y04x0(x−x0)
line intersects X axis at A when y=0
∴A=(13x09,0)
similarly B=(0,13y04)
given OABP forms a paralleogram→diagonals bisect each other(midpoint of diagonals are same)
midpoint of OB=(0,13y08)=midpoint of AP
Let P=(x,y)
∴midpointofAP=⎛⎜
⎜
⎜⎝13x09+x2,y2⎞⎟
⎟
⎟⎠
∴P(x,y)=(−13x09,13y04)→1
As (x0,y0) lie on hyperbola,it shoud the its equation:
4(x0)2−9(y0)2=36
from equation 1: x0=−9x13 and y0=4y13
substituting in hyperbola equation ,we get:
9x2−4y2=169
∴ locus of point P is hyperbola whose equation is:9x2−4y2=169
hence correct option is C.