The correct option is D m6+4m4+3m2+1=0
Given parabola is y2=4ax
Let m be the slope of the normal to the parabola
Equation of normal to the parabola is
y=mx−2am−am3
Since, it touches the hyperbola x2−y2=a2
x2−(mx−2am−am3)2=a2
⇒(1−m2)x2+(4am2+2am4)x−(a2+a2m6+4a2m2+4a2m4)=0
Since, it is tangent to hyperbola
⇒(2m2+m4)2=(m2−1)(1+m6+4m2+4m4)
⇒m6+4m4+3m2+1=0