Given, md=223.610 u ; mα=4.002 uλα=5.76×10−15 m
From de-Broglie wavelength,
λα=hPα
⇒ Pα=hλα=6.62×10−345.76×10−15≈1.15×10−19
By conservation of linear momentum, we have
0=→Pα+→Pd
⇒ Pα=−Pd
⇒ ∣∣→Pα∣∣=∣∣→Pd∣∣=P
The kinetic energy released in the process is,
K=Kα+Kd
=P22mα+P22md
=P22mα(1+mαmd)
After substituting the given values, we get
K=6.25 MeV
If mp is the mass of the parent nucleus, then
K+(md+mα)c2=mpc2
6.25+(223.61+4.002)c2=mpc2
6.25 u×c2931.5+(223.61 u+4.002 u)c2=mpc2
mp=227.62 u≈228