We know:
Dividend = (Divisor × Quotient) + Remainder
Let the tens and the units digits of the required number be x and yā, respectively.
Required number = (10x + y)
∴ 10x + y = (x + y) × 6 + 0
⇒ 10x − 6x + y − 6y = 0
⇒ 4x − 5y = 0 ....(i)
Number obtained on reversing its digits = (10y + x)
∴ 10x + y − 9 = 10y + x
⇒ 9x − 9y = 9
⇒ 9(x − y) = 9
⇒ x − y = 1 ....(ii)
On multiplying (ii) by 5, we get:
5x − 5y = 5 ....(iii)
On subtracting (i) from (iii), we get:
x = 5
On substituting x = 5 in (i), we get:
4 × 5 − 5y = 0
⇒ 20 − 5y = 0
⇒ y = 4
∴ Number = (10x + y) = 10 × 5 + 4 = 50 + 4 = 54
Hence, the required number is 54.