wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

a p Xa +b p+q x+y

Open in App
Solution

The left hand side determinant is,

Δ=| b+c q+r y+z c+a r+p z+x a+b p+q x+y |

Apply row operation, R 3 R 1 +R 2 + R 3 .

Δ=| b+c q+r y+z c+a r+p z+x a+b+b+c+c+a p+q+q+r+r+p x+y+y+z+z+x | =| b+c q+r y+z c+a r+p z+x 2( a+b+c ) 2( p+q+r ) 2( x+y+z ) |

Apply row operation, R 1 R 1 R 3 .

Δ=2| b+cabc q+rpqr y+zxyz c+a r+p z+x ( a+b+c ) ( p+q+r ) ( x+y+z ) | =2| a p x c+a r+p z+x ( a+b+c ) ( p+q+r ) ( x+y+z ) |

Apply row operation, R 2 R 2 R 3 .

Δ=2| a p x c+aabc r+ppqr z+xxyz ( a+b+c ) ( p+q+r ) ( x+y+z ) | =2| a p x b q y ( a+b+c ) ( p+q+r ) ( x+y+z ) |

Apply row operation, R 3 R 3 +R 1 + R 2 .

Δ=2| a p x b q y a+b+cab p+q+rpq x+y+zxy | =2| a p x b q y c r z | =2| a p x b q y c r z |

From above determinants, left hand side and right hand side are equal.

Hence, it is proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon