Let the equation of circle be x2+y2=a2 with ends of diameter M(a,0) and M′(−a,0)
Equation of concentric circle is x2+y2=b2........(i)
Equation of tangent to (i) is
y=mx+b√m2+1
mx−y+b√m2+1=0
which is the directrix of parabola
Let the focus be S(h,k)
For parabola we have PS=PM
√(h−a)2+k2=m(a)−1(0)+b√m2+1√m2+1√(h−a)2+k2=am+b√m2+1√m2+1......(ii)
Also PS=PM′
√(h+a)2+k2=m(−a)−1(0)+b√m2+1√m2+1√(h+a)2+k2=−am+b√m2+1√m2+1.....(iii)
Adding (ii) and (iii)
√(h−a)2+k2+√(h+a)2+k2=2b√(h+a)2+k2=2b−√(h−a)2+k2
squaring both sides
h2+2ah+a2+k2=4b2+h2−2ah+a2+k2−4b√(h−a)2+k24b2−4ah=4b√(h−a)2+k2b2−ah=b√(h−a)2+k2b−ahb=√(h−a)2+k2
Again squaring both sides
b2+a2h2b2−2ah=h2−2ah+a2+k2b2−a2=(1−a2b2)h2+k2(b2−a2b2)h2+k2=b2−a2h2b2+k2b2−a2=1
generalising the equation
x2b2+y2b2−a2=1