A park, in the shape of a quadrilateral ABCD, has ∠C=90∘,AB=9m,BC=12m,CD=5mand AD=8m. How much area does it occupy?
Open in App
Solution
Let us join BD.
In ΔBCD, applying Pythagoras theorem, BD2=BC2+CD2=(12)2+(5)2=144+25BD2=169BD=±√169=±13m=13m(sidecannotbenegative)Area ofΔBCD=12×BC×CD=(12×12×5)m2=30m2ForΔABD,s = Perimeter2=(9+8+13)2=15mBy Heron's formulaArea of triangle = √s(s−a)(s−b)(s−c)Area of ΔABD=√s(s−a)(s−b)(s−c)=⌊√15(15−9)(15−8)(15−13)⌋m2=(√15×6×7×2)m2=6√35m2=(6×5.916)m2=35.496m2Area of the park = Area of ΔABD+Area of ΔBCD=(35.496+30)m2=65.496m2=65.5m2(approximately)