The correct option is C λAλB=2
From conservation of linear momentum, mv=mvA+m2vB
v=vA+vB2
Also, by conservation of K.E,
v2=v2A+v2B2
(vA+vB2)2=v2A+(vB2)2
vAvB=v2B4
⇒vB=4vA and mB=mA2
PA=mAvA
PB=mA2×4vA=2PA
⇒λAλB=PBPA=2PAPA=2
Alternative:
Velocity of particle A after collision,
vA=mA−mBmA+mBv=m−m/23m/2v=v/3
Momentum of particle A,
PA=m×v3=mv3
Velocity of particle B after collision,
vB=2mAmA+mBv=2m3m/2v=4v3
Momentum of particle B,
PB=m×4v3=4mv3
⇒λAλB=PBPA=2PAPA=2