A particle executes simple harmonic motion with an amplitude of 10 cm and time period 6 s. At t = 0 it is at position x = 5 cm going towards positive x-direction. Write the equation for the displacement x at time t. Find the magnitude of the acceleration of the particle at t = 4 s.
Given, r=10cm, AT t=0, n=5 cm, T=6 sec
So, ω=2πT=2π6=π3sec−1
At t=0, x=5 cm
So, 5=10 sin (w×0+Φ) [Y=r sin wt]
=10 sinΦ
sin Φ=12
⇒ Φ=π6
∴ Equation of displacement
x= (10 cm) sin(π3t+π6)
(ii) At t=4 second
x=10 sin[π34+π6]
=10 sin[8π+π6]
=10 sin(9π6)
=10 sin(3π2)
=10 sin π+π2
= −10 sin π2=−10
Acceleration,
a=−w2x
=(−π29)×(−10)
=10.9≈0.11 cm/sec