A particle having mass 10 g oscillates according to the equation x=(2.0 cm) sin[100 s−1)t+π.6]. Find (a) the amplitude, the time period and the spring constant (b) the position, the velocity and the acceleration at t=0.
x=(2.0 cm) sin [(100 s−1)t+π8]
m=10 g
(a) Amplitude = 2 cm
ω=100 sec−1
∴ T=2π100=π50 sec.
=0.063 sec.
We know that,
T=2πmk
⇒ T2=4π2mk
⇒ k=4π2T2=10.5 dyne/cm
=100 N/m
[Because 0=2πT=100 sec−1]
(b) At t=0, x=2 cm sinπ6
=2×12=1 cm from the mean position
We know that,
x=A sin (ωt+Φ),
v=aω cos (ωt+Φ)
=2×100 cos (0+π6)
=200×√32
=100√3 cm sec−1
=1.73 ms−1
(c) a=−w2x
=1002×1=1 cm/s2