The correct option is C tv=2−2/√3, ta=2
s=14t4−2t3+4t2−7
v=dsdt=t3−6t2+8t
dvdt=3t2−12t+8
For v to be maximum or minimum,
dvdt=0
⇒3t2−12t+8=0
⇒t=12±√486
⇒t=2±2√3
Now, d2vdt2=6t−12
At t=2−2√3, d2Vdt2<0
Hence, v is maximum at t=2−2√3
Now, acceleration a=dv/dt=3t2−12t+8
dadt=6t−12
For acceleration to maximum or minimum,
dadt=0
⇒t=2
Now, d2adt2=6>0
Hence, acceleration is minimum at t=2