Position vector is given by
→r=x^i+y^j
Given x=t33,y=2t2
→r=t33^i+2t2^j
At t=3 s
→r=333^i+2×32^j
=9^i+18^j
→v=drdt=3t23^i+4t^j
→v=t2^i+4t^j
At t=3 s
→v=32^i+4×3^j
=9^i+12^j
cos θ=→r.→v∣∣→r→v∣∣
cos θ=(9×9)+(18×12)√92+182.√92+122
cos θ=81+216√405√225=297√405√225
θ=cos−129715√405
Given,
θ=cos−1(xy√z)
By comparing, we get
x=297, y=15, z=405
Hence, z-x-y=405-297-15=93.