The correct option is
C (5 m,1.25 m)Given, velocity of the particle at point
O,
u=5√5 m/s.
For given projectile along
x-axis,
component of speed,
ux=5√5cosα.
Substituting the value of
cosα, in the above equation we get,
ux=5√5×2√5
∴ux=10 m/s
Time taken to reach at point
D,
t=ODux
⇒t=103+x10
⇒t=10+3x30.........(1)
Component of velocity along
y-axis,
uy=5√5sinα
Substituting the value of
sinα from above triangle,
⇒uy=5√5×1√5
∴uy=5 m/s
Applying equation of motion,
s=ut+12at2, along
CD,
where,
s=CD=xtan37∘,
t=10+3x30,
a=−g=−10 ms−2
Substituting the values in the equation of motion,
⇒xtan37∘=5(10+3x30)−12×10x(10+3x30)2
⇒3x4=10+3x6−5(10+3x30)2
⇒3x4=10+3x6−5×(10+3x)230×30
⇒3x4=30(10+3x)−(10+3x)230×6
⇒135x=300+90x−100−9x2−60x
⇒9x2+105x−200=0
On solving this, we get,
x=53 and
x=−403
Since, distance cannot be negative.
Thus,
OD=103+x=103+53=5 m
and
CD=3x4=34×53=54=1.25 m
Hence, co-ordinate of point
C is
(5 m,1.25 m)