A particle is projected up an inclined plane of inclination β at an elevation a to the horizon. Show that a. tanα+cotβ+2tanβ, if the particle strikes the plane at right angles b. tanα=2tanβ if the particle strikes the plane horizontally.
Open in App
Solution
a. 0=usin(α−β)t−12gcosβt2 t=2usin(α−β)/gcosβ....(i) 0=ucos(α−β)−gsinβt ⇒t=ucos(α−β)gsinβ....(ii) From (i) and (ii), we get 2sin(α−β)cosβ=cos(α−β)sinβ⇒2tan(α−β)=cotβ ⇒2(tanα−tanβ)1+tanαtanβ=cotβ ⇒2tanα−2tanβ=cotβ+tanα ⇒tanα=cotβ+2tanβ b. t=2usin(α−β)/gcotβ Also, t=usinαg⇒2sin(α−β)cosβ=sinα ⇒2sinαcosβ−2cosαsinβ=sinαcosβ ⇒sinαcosβ=2cosαsinβ ⇒tanα=2tanβ.