wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A particle is projected up an inclined plane of inclination β at an elevation a to the horizon. Show that
a. tanα+cotβ+2tanβ, if the particle strikes the plane at right angles
b. tanα=2tanβ if the particle strikes the plane horizontally.

Open in App
Solution

a. 0=usin(αβ)t12gcosβt2
t=2usin(αβ)/gcosβ....(i)
0=ucos(αβ)gsinβt
t=ucos(αβ)gsinβ....(ii)
From (i) and (ii), we get
2sin(αβ)cosβ=cos(αβ)sinβ2tan(αβ)=cotβ
2(tanαtanβ)1+tanαtanβ=cotβ
2tanα2tanβ=cotβ+tanα
tanα=cotβ+2tanβ
b. t=2usin(αβ)/gcotβ
Also, t=usinαg2sin(αβ)cosβ=sinα
2sinαcosβ2cosαsinβ=sinαcosβ
sinαcosβ=2cosαsinβ
tanα=2tanβ.
1553295_985272_ans_e1eb4b062da3411f9dabf6382a634813.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Relative Motion in 2D
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon