Step
1 : Draw rough diagram for the upward projection.
Step
2 : Find time of flight.
Given, projection velocity,
v0=10 m/s
Angle of inclination,
α=30∘
Angle of projection from horizontal,
θ0=60∘
So,
θ=θ0−α
θ=60∘−30∘=30∘
Time of flight for oblique projectile motion,
T=2v0sinθgcosα
T=2×10×sin30∘10×cos30∘
T=2√3s
Step
3 : Find speed of striking for upward projection.
From first equation of motion
v=u+at
vxf=v0cos30∘−gsin30∘T
=10√32−1022√3=5√3 m/s
vyf=v0sin30∘−gcosαT
vyf=102−10×√32×2√3
=−5 m/s
vf=
⎷(5√3)2+52=10√3 m/s
Step
4 : Draw rough diagram for the downward projection.
Step
5 : Find speed of striking for downward projection.
Time of flight for downward projection will be same as upward projection, because
uy is same in both cases.
From first equation of motion
v=u+at
vxf=v0cos30∘+gsin30∘T
vxf=25√3
vyf=v0sin30∘−gcosαT
vyf=102−10×√32×2√3
=−5 m/s
Then
vf=
⎷(25√3)2+52=10√73
So, ratio of speeds of striking for upward and downward projection
=1:√7
Final answer:
(d)