Given,
Radius, r=1m
Initial angular velocity,ωo=12rad/s
Final angular velocity, ω=2π60(480π)=16 rad/s
Apply angular kinematic equation.
ω=ωo+αt
(a) Angular acceleration, α=ω−ωot=16−122= 2 rad/s2
(b) Tangential velocity, Vtangential=ωr=r(ωo+αt)=12+2t
(c) Centripetal acceleration ac=rω2
Net acceleration, anet=√rω2+αr=√r(ωo+αt)2+αr
At,(t=0.5sec), anet=√1(12+2×0.5)2+2×1=13.07ms−2
At,(t=3sec), anet=√1(12+2×3)2+2×1=18.05ms−2
(d) Angular displacement at (t=3sec) , θ=ωot+12αt2=12×3+12×2×32=45rad