Here first ahead of first by
300 and third motion is ahead of second by
300. So, the third motion is ahead of first motion by
600. Let amplitude of the motion is
a and time period of motion is
T.
So, angular frequency
ω=2πTEquation for displacement of first motion, second motion and third motion respectively are
x1=asinωt
x2=asin(ωt+300)
x3=asin(ωt+300)
So the resultant motion will be: x=x1+x2+x3
⇒x=asinωt+asin(ωt+300)+asin(ωt+300)
⇒x=asinωt+a[sinωtcos300+sin300cosωt]+a[sinωtcos600+sin600cosωt]
⇒x=asinωt+a[√32sinωt+12cosωt]+a[12sinωt+√32cosωt]
⇒x=asinωt+a[1+√32+12]sinωt+a[√32+12]cosωt
⇒x=(√3+32)asinωt+(√3+12)acosωt
This equation shows that the resultant motion has two perpendicular S.H.M as its component. So, the resultant amplitude is
A=√(√3+32)2a2+(√3+12)2a2
⇒A=a2√(√3+3)2+(√3+1)2
⇒A=a2√3+6√3+9+3+2√3+1
⇒A=a2=√16+8√3
⇒A=(4+2√3)a