x1=a1sinωtx2=a2sin(ωt+θ)
Given that a1=30cm and a2=4.0cm
1) In this case θ=0
x1=3sinωt
x2=4sin(ωt+θ)
So, amplitude of resultant motion simply add p which is (3+4)=7cm
2) x1=3sinωt
x2=4sin(ωt+600)=4sinωtcos600+4sin600cosωt
Or, x2=2sinωt+2√3cosωt
Resultant motion should be x=x1+x2=3sinωt+2sinωt+2√3cosωt
Or, x=5sinωt+2√3cosωt
The resultant of two perpendicular S.H.M. So, resultant amplitude is
=√52+(2√3)2=√25+12=√37cm
3) x1=3sinωt
x2=4sin(ωt+900)=4cosωt
So, x=x1+x2
$x=3\sin { \omega t } +4\cos { \omega t } $
So, resultant amplitude =√32+42=5cm As the resultant motion is superposition of two perpendicular S.H.M
Answers are :7cm,√37cm,5cm