Given, vy=dydt=5 m/s and ay=0 m/s2
Given, x=y2+2y+2
Differentiating the above equation w.r.t x, we get
dxdt=2ydydt+2dydt+0 vx=2y×5+2×5 {∵vy=5 }
vx=10y+10
Differentiating velocity for acceleration
∴ax=dvxdt=10×dydt=10×5=50 m/s2
Net acceleration is
∴a=√a2x+a2y=√(50)2+0=50 m/s2