The correct option is B R=a2b.
(xa)2+(yb)2=1....(1)
differentiating with respect to x.
2xa2+2yb2dydx=0
dydx=−xb2ya2......(2)
Again differentiating with respect to x.
d2ydx2=−b2a2[x(−1y2)dydx+1y]
d2ydx2=−b2a2[−x2b2y3a2+1y] using (2)
Radius of curvature , R=[1+(dydx)2]3/2d2ydx2
or, R=[1+(x2b4y2a4)2]3/2−b2a2[−x2b2y3a2+1y]
At x=0,R=−a2b2y
Using (1) for x=0,y=b or −b
Thus , R=a2b