The correct option is A √(1+a2)ω2b
According to the problem
→w=w(−→j)
So, wx=dvxdt=0 and wy=dvydt=−w ...........(1)
Differentiating equation of trajectory, y=ax−bx2, with respect to time
dydt=adxdt−2bxdxdt ...................(2)
So, dydt|(x=0)=adxdt|(x=0)
Again differentiating with respect to time
d2ydt2=ad2xdt2−2b(dxdt)2−2bxd2xdt2
or, −w=a(0)−2b(dxdt)2−2bx(0) (using 1)
or, dxdt=√w2b (using 1) ..............(3)
Using (3) in (2) dydt|x=0=a√w2b............. (4)
Hence, the velocity of the particle at the origin
v=√(dxdt)2x=0+(dydt)2x=0=√w2b+a2w2b (using equations (3) and (4))
Hence, v0=√w2b(1+a2)