A particle moving on a curve has the position given by x=f′(t)sint+f′′(t)cost,y=f′(t)cost−f′′(t)sint at time t where f is a thrice-differentiable function.Then the velocity of the particle at time t is
A
f′′′(t)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
f′(t)+f′′′(t)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
f′(t)+f′′(t)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
f′(t)−f′′′(t)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bf′(t)+f′′′(t) Vx =dxdt =f′(t)cost+f"(t)sint−f"(t)sint+f"′(t)cost =cost(f′(t)+f′′′(t)) ...(i) Vy =dydt =−f′(t)sint+f"(t)cost−f"(t)cost−f"′(t)sint =−sint(f′(t)+f′′′(t)) ....(ii) Hence Net velocity Vnet =√V2x+V2y =(f′(t)+f′′′(t))√sin2t+cos2t =f′(t)+f′′′(t).