A particle of mass 100 g moving at an initial speed u collides with another particle of same mass kept initially at rest. If the total kinetic energy becomes 0.2 J after the collision, what could be the maximum and the minimum value of u.
Final K.E.=0.2 J
Initial K.E.=12mv21+0
=12×0.1×u2=0.05 u2
mv1+mv2=mu
where v1 and v2 are final velocities of 1st and 2nd block respectively
⇒v1+v2=u ...(i)
(v1−v2)+e(u1−u2)=0
⇒eu=v2−v1
[u2=0,u1=u] ...(2)
Adding equation (1) and (2),
2v2=(1+e)u
⇒v2=(u2)(1+e)
∴v1=u−u2(1+e)
v1=u2(1−e)
Given,12mv21+12mv22=0.2
⇒v21+v22=4
⇒u22(1+e2)=4
⇒u2=81+e2
For maximum value of u,denominator should be minimum,
⇒e=0(inelastic collision)
⇒u2=8
⇒u=2√2 ms
For minimum value of u,denominator should be maximum ,
⇒e=1(perfect elastic collision)
⇒u2=4
⇒u=2 ms