The correct option is D 125 kg-m2/sec
Given, mass of the particle m=200 g
Speed of the particle u=10 m/s
θ=60∘,t=5 sec
Let the angular momentum of the particle after t=5 sec is →L
Angular momentum is given by
→L=m(→r×→v)
Now, →r(t)=x^i+y^j=(ucosθ)t^i+(usinθ×t−12gt2)^j ……(1)
where, x and y is the distance travelled by the particle after time (t) in x and y direction respectively.
→r(t)=(10cos60∘)×5^i+(10sin60∘×5−12×10×52)^j
r(t)=25^i+(25√3−125)^j ……(2)
Now, velocity of particle
→v(t)=vx^i+vy^j=(ucosθ)^i+(usinθ−gt)^j
v(t)=5^i+(5√3−50)^j ……(3)
∴→L=m(→r×→v)=0.2∣∣
∣
∣∣^i^j^k25(25√3−125)05(5√3−50)0∣∣
∣
∣∣
⇒→L=0.2[0×^i−^j×0+(−625)^k]
→L=−125^k kg-m2/sec
So, magnitude of angular momentum
|→L|=125 kg-m2/sec