In head-on collision both momentum and kinetic energy are conserved hence, by conservation of momentum
m1u1+m2u2=m1v1+m2v2
m1u1+m2(0)=m1v1+m2v2
m1u1=m1v1+m2v2 ............(1)
And conservation of kinetic energy gives
12m1(u1)2=12m1(v1)2+12m2(v2)2 ...........(2)
From equation (1) and (2)
m1(u1v1)=m2v2 ...........(3)
m1[(u1)2(v1)2]=m2v2 ...........(4)
Dividing equation (4) by (3) we get
u1+v1=v2
Using this value in (3)
m1(u1v1)=m2(u1+v1)
m1u1m2u2=m2v2+m1v1
u1(m1−m2)=v1(m1+m2)
⇒v1=u1(m1−m2)(m1+m2)
Hence, fractional loss in KE of striking particle is ratio of change in KE to initial KE.
η=EiEfEi=1−EfEi
⇒η=1−(v1u1)2
⇒η=1((m1−m2)(m1+m2))2
⇒η=(m1+m2)2(m1−m2)2m1+m2)2
⇒η=4m1m2(m1+m2)2