The correct option is
C −200(^k)Initially, at time
t=0 Horizontal component of speed
ux=u=10 m/s Vertical component of speed
uy=0 At time
t, when it hits the ground:
(Assume upward motion as positive)
Horizontal speed
vx=ux (no horizontal acceleration)
From eq.
v2=u2+2as,
v2y=u2y+2ays=0−2gs ⇒v2y=2×(−10)×(−20) or
vy=20 m/s So velocity vector when particle hits the ground,
→v=10^i−20^j=vx^i+vy^j Time of flight
t can be calculated from,
vy=uy+ayt⇒20=0+10×t i.e
t=2 s So, distance travelled by the particle:
In horizontal direction,
Sx=uxt=20 m In vertical direction
Sy=20 m Hence, particle will hit the ground at
A(20,0).
Position vector from point of projection,
→r=(20−0)^i+(0−20)^j=20^i−20^j As we know, angular momentum
→L=m(→r×→v) →L=1[(20^i−20^j)×(10^i−20^j)] =−400(^i×^j)−200(^j×^i) =−400^k−200(−^k) →L=−200^k