The correct option is
C −200(^k)Initially, at time
t=0
Horizontal component of speed
ux=u=10 m/s
Vertical component of speed
uy=0
At time
t, when it hits the ground:
(Assume upward motion as positive)
Horizontal speed
vx=ux (no horizontal acceleration)
From eq.
v2=u2+2as,
v2y=u2y+2ays=0−2gs
⇒v2y=2×(−10)×(−20)
or
vy=20 m/s
So velocity vector when particle hits the ground,
→v=10^i−20^j=vx^i+vy^j
Time of flight
t can be calculated from,
vy=uy+ayt⇒20=0+10×t
i.e
t=2 s
So, distance travelled by the particle:
In horizontal direction,
Sx=uxt=20 m
In vertical direction
Sy=20 m
Hence, particle will hit the ground at
A(20,0).
Position vector from point of projection,
→r=(20−0)^i+(0−20)^j=20^i−20^j
As we know, angular momentum
→L=m(→r×→v)
→L=1[(20^i−20^j)×(10^i−20^j)]
=−400(^i×^j)−200(^j×^i)
=−400^k−200(−^k)
→L=−200^k