The correct options are
A The kinetic energy after a displacement y is qEy
B The horizontal and vertical components of acceleration are ax=0,ay=qEm
C The equation of trajectory is y=12(qEx2mv2)
D The horizontal and vertical displacements x and y after a time t are x=vt and y=12ayt2
Here, →E=E(−^j)
Force , →F=(−q)→E=qE^j
so, Fx=0 or max=0⇒ax=0...(1) and
Fy=qE or may=qE⇒ay=qE/m...(2)
using (1), dvxdt=0⇒vx=C
when t=0,vx=v so,C=v
thus, vx=v or dxdt=v
integrating, x=vt+C1 where C1, integrating constant.
at t=0,x=0, so, C1=0
hence, x=vt...(3)
using (2), dvydt=qE/m
integrating, vy=(qE/m)t+C2
at t=0,vy=0, so C2=0
thus, vy=(qE/m)t=dydt
integrating, y=(qE/m)t22+C3
at t=0,y=0, so C3=0
hence, y=(qE/m)t22=ayt22...(4)
The equation of trajectory is y=(qE/m)x22v2=12(qEx2mv2) using (3)
The kinetic energy after a displacement y is KE(y)=12mv2y=12m(qE/m)2t2=m(qE/m)2(my/qE)=qEy