If the displacement of the particle is →S, the work done W by the given force →F is equal to →F.→S where →F is a constant force
⇒−→W=→F.→S....(1)
where →S=Δ→r=→r2−→r1
→S=[(c^i+a^j+b^k)−(a^i+b^j+c^k)]
→S=[(c−a)^i+(a−b)^j+(b−c)^k]....(2)
and →F=b^i+c^j+a^k.....(3)
Using (1), (2) and (3)
W=(b^i+c^j+a^k)[(c−a)^i+(a−b)^j+(b−c)^k]
⇒W=(c−a)b+(a−b)c+(b−c)a⇒W=bc−ab+ac−bc+ab−ac=0
Net work done by the force →F for the given displacement is zero.