Newtons 2nd Law applied to Particles in Circular Motion
A particle of...
Question
A particle of mass m is suspended from a ceilling through a string of length L the particle moves in a horizontal circle of radius r. what is the speed of the particle and the tension in the string for conical pendulum ?
A
υ=r√grl(L2−r2)1/4,T=mgL√L2−r2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
υ=r√g(L2−r2)1/4,T=mgL√L2−r2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
υ=r√g(L2−r2)1/4,T=mgLr
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
υ=√grL(L2−r2)1/4,T=mgr√L2−r2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bυ=r√g(L2−r2)1/4,T=mgL√L2−r2 sinθ=rL(a) Tension T along the string
(b) The weight mg vertically downward In radial direction, Tsinθ=mv2r
In Vertical direction, Tcosθ=mg
Equation (i) and (ii) tanθ=υ2rg υ=√(rgtanθ)=
⎷(rg)×(r√L2−r2) υ=r√g(L2−r2)1/4 By equation (ii)T=mgcosθ=mgL(L2−r2) T=mgL(L2−r2)1/2