A particle of mass m moves according to the equation F=−amr where a is a positive constant,r is radius vector. r=r0^i and v=v0^j at t=0. Describe the trajectory.
A
(xr0)2+a(yv0)2=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(xr0)2+a(yv0)2=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(xr0)2+(yv0)2=1α
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
noneofthese
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A(xr0)2+a(yv0)2=1 F=−amr⇒Fx^i+Fy^j=−am(x^i+y^j)⇒md2xdt2^i+md2ydt2^j=−am(x^i+y^j) d2xdt2=−ax and d2ydt2=−ay ...............................................................(i) Thus x=xosin(ωt+θ) and ω2=a .........................................................................................(ii) dxdt=xoωcos(ωt+θ) since vx=0 when t=0 ⇒xoωcos(θ)=0 ⇒θ=π2 ⇒x=xosin(ωt+π2) x=xocos(ωt) ⇒x=rocos(ωt) ...............................................(iii)∵x(t=0)=ro Now from (i), we have, y=y0sin(ωt+β) y=y0sin(ωt)∵y(t=0)=0 dydt=y0ωcos(ωt) since vy=vo when t=0 ⇒vo=y0ω ⇒y=voωsin(ωt) .....(iv) from (iii) and (iv) we have, (xr0)2+(yv0/ω)2=1 ⇒(xr0)2+ω2(yv0)2=1 ⇒(xr0)2+a(yv0)2=1∵ω2=a from (ii)