A particle starts from rest, travelling on a circle with constant tangential acceleration. The angle between velocity vector and acceleration vector, at the moment when the particle completes half the circular track is
A
tan−1(2π)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
tan−1(π)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
tan−1(3π)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
tan−1(2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Atan−1(2π) Let tangential acceleration at=am/s2 Using v2=u2+2ats and u=0, we get, v=√2as where s is distance covered. For half circular path, s=πR i.e v=√(2a)(πR)(∵a is constant)